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ABSTRACT R

The Mori-Tanaka micromechanics method is used to predict the effective properties of composite
materials consisting of a polymer matrix reinforced by a fiber made of a transformation shape
memory effect (SME) material. The composite response is plotted for combinations of the fol-
lowing scenarios: (1) isothermal longitadinal and transverse stress input, (2) stress-free thermal
loading, (3) coustant fiber thermoelastic properties, and (4) thermoelastic fiber properties that
vary with the martensite volume fraction. For the case of an isothermal stress input, the compos-
ite transforination stress, the maximum transformation strain, and the hysteresis are all reduced
vis-a-vis the monolithic SME material. In contrast to 2 monolithic SME material, stress-frec ther-
mal loading of 2 SME composite ¢can produce a transformation strain. It is shown that closed form
solutions for the cffective martensite and austenite start tetmperatures can be derived, that they
are sensitive to the stress-free reference temperature of the fiber, and that the siress-free austenite
and martensite start temperatures are higher than those of the monolithic SME material.

1. INTRODUCTION

Active shape memory effect (SME) materials allow for the fabrication of structures with intrinsic
contiol of shape and vibration parameters such as stiffness, natural frequency, and damping. The
SME is usually due to either the stress induced transformation between austenite and martensite
or the reorientation of martensite variants. For both the transformation and the reorientation
SME, an active composite can be made by surrounding a prestressed martensitic SME fiber with a
non-SME matrix material. When the composite is heated, usually by passing an electric current
through the SME fiber, the martensite is transformed into anstenitc and the fiber contracts,
thereby producing the activation. Upon cooling, the austenite transforms into martensite, and

the internal stresses (sometimes called eigenstresses) within the matrix return the composite
_structure to its original shape.

Counstitutive equations describing the thermomechanical behavior of SME composites are needed
to cunable their efficient production and service. In plienomenclogical constitutive modelling,
the form of the cquations and the constants in the equations are determined from experiments.
Phenomenological modelling is descriptive, but not explanatory. Micromechanical coustitutive
modcliing consists of solving a small-seale boundary value problemn and then averaging the solution
to obtain the eflective (or overall) composite propertics. Bucanse micromechanics is explanatary,
it allows for the systematic design of composite materials. '
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In the present paper, the Mori-Tanaka2micromechanics method is used ¢
chanical responsc of composites consisting of transformation SME fibers

The matrix of such a composite must be capable of accommaodating
with the SME of the fiber. Polymers are ¢

though the large fiber transform
matrix is hercin assumed to be
mation SME constitutive equ
Mori-Tanaka micromechanics
SME fiber and the composite are discussed in part 4.

Throughout the paper, superscripts denote qualitative description of the associated variables,
whereas subscripts denote tensoria] components.

o predict the therinome.
and non-SME matrices.
the large strains associatad
herefore currently envisaged as matrix materials. Al
ation strains will cause viscoclasticity in the polymer matrix, the
lincar thermoelastic. In part 2, the one-dimensional transfor-
ations of Tanaka are extended to three dimensions. In part 3, the
method is presented. The thermomechanical behavior of both the

2. SME FIBER CONSTITUTIVE EQUATIONS

one-dimensional transformation SME equations to
similar to the method of Liang and Rogers in that
cted by the hydrostatic strass. However, the present
bermal stiffness tensors differs from the derivation of
ion of state is given by

three dimensions. The present derivation is
it assumes that the transformation is unaffe
derivation of the tangent mechanieal and t
Liang and Rogers. The stress-strain equat,

%ij = Cijuieyy = 1317 (CL-z - ez, - auAT) (1)

where Cijui, aij, €i» ¢i5s €, and AT are the elastie stiffness tensor,
tensor, the elastic straiu, the total infinitesimal strain,

T ~T°, where T is the stress-free reference temperature.
expansion tensors are approximated here by the rule of m

the thermoclastic expansion
the transformation strain, and AT =

The clastic stiffness and thermoelastic
ixtures

Cijit = Cliy + £(CH, -Chu)r  au=ol+¢ (abf - o), (2)
where the superscripts 4 and M sta;zid f-Ot austenite and martensite, and &, an internal variable
representing the volume ft_action of martensite, is given by

£=l-czp[a”(M"—T)+b“&] M!<T < M )
during the martensitic transformation and
¢ = ezp[a*(4* - T) + b4a]  argT A (4)

during the reverse transformation. M*? and A%

start temperatures, respectively. The stress de
given by :

represent the stress-free martensite and austenite
pendence of the transformation temperatures is

1

1
M =M“+*C—MG. MI:A’IOI"."-W&'

1 (3)
A’ =A°' +~..c].7 -4 T A, = Agf 3 -A—a )

003,90
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whete CM and C4 are the martensitic and austenitic stress influence cocﬁicmnts Assuming that

the transformation ie complete when £ = 0.99, the constants o™, b, g4, and bA arc given Ly

M= n(0.01) M = i“i
M> - M7y’ =C

4 in(0.01) I ©
(As - AS)" T CcAT

By assuming that the stress-induced SME is isotropic, these three-dimensional equations for ¢
were obtained from the one-dimensional cqu:mons by replacing the one-dimensional stress 1, 3
the effective stress, &, where & = (% )i and the deviatoric stress of; is given by of; =

ij
i = $o18i5. The rate of cransforma.tion can be obtained by applying the cln.m rule to (3) and
(4) to vield 3
é= as 1+ af 5 (7)

The transformation strain is due solely to tlmt part of § that is stress-induced. In other words,
it is assumed that a stress-free thermal loading of the SME mnaterial produces no transformation
strain because all of the martensite variants form with equal probability and the transformation is
volume conserving, or isochoric. An applied stress, however, favors the growth of those martensitic
variants which are oriented to yield the largest transformation strains.

By assuming that the clastic response is also isotropic, the three-dimensional transformation
strain rate can be obtained from the one-dimensional equation as foliows:

. QO o o 300,

= ___o- - -

D3’ — ST ipgci=Hd%: | (8)

where the transformation teusor, Q, can be obtained from the ma.xxmum isothermal (ransfor-
mation strain (which corresponds to £ = 1) and the one-dimensional elastic modulus, D, using
gtmaT = -% During the martensitic and reverse trausformations, respectively, the “hardness®

parameter, H, is
g={iBE“0-80 M/ <T<M
-8 vAc AT A
H =0 during trausformation-frec deformation.

o~
v
~

Equations (1) through (9) complete the constitutive description of the SME material. liowever,
the tangent mochanical and thermal stiffness tensors are needed in the Mori-Tanaka microme-

chanics method. The tangent mechanical and thermal stiffuesses Lz and ;5. respectively, are
defined by

&is = Lijuténs + ;T . (10)

In arder Lo derive these tangent stiffness tensors, equation (1) is written in rate form as

&5 =Cijatédy + Cijrey

o . o (11
=Cijut (e = &y = o = audT) + Cijuef,y .
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Equations (2) and (7) thru (9) can be substituted into {11) to yield
. 0] 3 . o 1 . ~
&ij =Cojntént — H Cizia (0wt - -3-0'-,-5&1) - CijmanT

8. 9. L0 (12)
-Cukt(’lfz'"'lﬁ)AT(‘iT'*‘ %U)‘*( ik = Clhu) ot + 2 )

aT “\3r! * 55
By introducing the term
‘pijmn = Iijmn + Hcijmn (13)
and collecting the terms multiplying T and &, equation (12) can be rewritten as
.. . 1.
FmnPijmn =Cijuiént + H Ci,'ugﬂnﬁu
; o}
'*'[(Ci}-‘u - Cliu) € ~ Cisua (o] - )AT] af (14)
M A e M A aE r
+ [(Cijkl ~ Chu) el — Cijia{ait — afy) AT] a7 ~ Ciman T.

The temperature rate T is assumed to be a known input. Recall that both &;; and &; are known
from the non-tangent form of the constitutive equations, equations (1) thru (9). Therefore, all of

the terms in equation (14) are known, and the tangent response can be determined. For example
during an isothermal transformation the tangeat stiffness is given by

ik 1 1, 9
Lonnit = Ct.’“ tro .{H C"J'W"”"s"?‘*'[(ci:‘w Csoﬁ) e C,,,,(ag c,,,)AT} %, }
(I’umn q::mnelu 3

(15
During transformation-frec thermomechanical loading, the tangent response is giver by

&5 = Cijuéut = CizuenT (16)

so that L;ju = Chjit and li,' = =Cijetant.

3. MICROMECHANICS

3.1 General expressions {or the effective composite properties

Equations (17) thru (32). Hill's 5“dxrect. approach” to effective composite propertics, are gencral
relationships that are independent of the micromechanics method used to obtain the concentration
tensors. The thermomechanical constitutive relations of the phases v = m (matrix) and v = f
(Rber) are given by

035 = L€ + T, v=mf (17)
and

&= Mot +miT, ve=mf - (18}

Q005,018
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whc.rc L}; i and MY, are the tangent stiffuess and compliance tensors. respeetively. The thermal
strain tensor my; and the thermal stress tensor {3; arc related by

v o, v v
= = Liumi -

(19)
Similarly, the composite rosponéc is given by the effective constitutive equations
68 = Luél + 15T (20)
and _
with
I = =Léums, . (22)
The composite stress and strain rates are given by the volume averages
o5; =cmal + e/ é{,— (23)

and

& = +cfel;, (24)

where ¢ denotes the volume fraction of the ¥** phase. The local constituent stress and strain |
fields, assumed to be uniform within each phase, are given in terms of the composite fields by

&% = Blugsh + 05T, v=mf (25)
and .

where By, AYj bYj and af; are the stress, strain, thermal stress and thermal strain concentra-
tion tensors, respectively. The concentration tensors are constrained by the relations

™ ;’;kl"'clB!jlel: ikt 4

(27)
™ ATy + o Alyy = Lijue, (28)
b +efbl; =0, (29)
aad
c"al +¢f a{,- =0, (303

where ;5 is the fourth order identity tensor. The effective compasite tangent stiffness and
compliance tensors, rospectively, are

Lt = "L maAmntt + ¢/ Lipn Ay | (31)
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e
[ -— a m
Mia = " M Bliniy + CfM!gm,.BLnkx . (32)
Note that the effective stiffness is not the volume average of the constituent stiffnesses.
The thermal stress and strain coxécentra.tiou tensors can be determined using the decomposition
scheme of Benveniste and Dvorak.” The decomposition allows for the determination of the thermal

concentration tensors as a function of the mechanical concentration tensors and the constitnent
thermomechanical properties. The thermal stress and strain concentration tensors arc given as

. . -1
b:i = (Iijkz - B;’J'kl)( k?mn - Mk{lmn) (mfmn - :n) :

v=m,f, (33)
and .
¥y = (Tt = Aljrg) (Liime = Litmn) ™ (o = Ima)s.  v=m,f. (34)
The effective composite thermal properties are given by
c -1
l;j = lZS* + Cl(Llfjkl - z’u)A{-zmn (L{nnop - L:aap) (l{p = l:; ’ (35)_.
and ; ; ) ., '
mi; =m + o (M ~ M) Bk(mﬂ(Mv{mep - M) (md, - mpy) - (36)

Note that equatiors (33) thru (36) are gencral relationships that are independent of the microme-
chanics method used to obtain the mechanical concentration tensors. This decomposition method
‘requires that the effects of thermal and mechanical loads can be obtained separately. This lin-
earity requirement is violated during the SME phase transformation. In the current increinental
formulation, it is assumed that the SME equations are piecewise linear, that is, lincar within eash
increment. The accumulated error will be small if small increments are used.

3.2 The Mori-Tanaka micromechanics method

From inspection of equations (17) thru (36), it is apparent that the cffective composite ther-

momechanical constitutive equations may be obtained from the evaluation of the mechanical
concentration tensors. The mechanical concegtra.tion tensors are herein determined using the
Benveniste reinterpretation of the Mori-Tanaki method.

Eshelby’s nethod, sometimes called the “equivalent inelusion method”, is a means of predicting
the cffective properties of dilutely reinforced composite materials. The term “dilute” means that
the reinforcement phase is of a sufficiently small volume fraction that ﬁhe units of reinforcement,
such as particles, whisknrs or fibers, do not intcract. The Mori-Tanaka‘incthod is an approximate
extension of Eshelby’s method to the case of non-dilute volume fractions. ‘The Mori-Tanaka
method is a “mean field” theory, meaning that the mode! assumes that the stress and the strain
arc uniformn within each phase of the compasite. The model makes use of the rcinforcement
volume [raction and the reinforcement shape, but the size of the units of reinforcement play no
part in the method. It is assumed that the temperature is uniform thronghout the composite. For

isotherimal conditions, .the concentration tensors are given by the Mori-Tanaka micromechanics
method as .

»

10 = Whhoun (™ Lonnst + W)™ . V=S (37)
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and

v __mu -1

Gt = Thjn (M mmta + I TL )™ v=mf, {38)
The dilute strain concentration tensor Tém and the dilute stress concentration tensor W{J L e
defined as '

T.-’;-L-z = [Iijkl + Sijnm(L'm".w,,)"l (L,’,,,L., - L;’;,k,)] ‘ , 39)
and
W"I?'k‘ = L{J'mnTr{mop onkl > {40)
with

TG = Wi = Liju - (41)

The solution of the mechanical problem requires the evaluation of the Eshelby tensor, Siju,
which is a function of the reinforcement shape and the matrix stiffness. The Eshelby tensor
relates the unconstrained transformation strains and thermal strains, called “eigenstrains” in the
vocabulary of MuraSto the actual transformation strains and thermal strains in the composite.
Within the composite, these eigenstrains are partially constrained due to the misinatch of phase
mechanical and thermal stiffnesses. Because the matrix stiffncss is herein assumed 1o be constaat,
the Eshelby tensor must be calculated only once, even though the SME fiber stiffness varies. If
the matrix stiffness varies, as it does during plastic deformation of metal matrix composites, then
it is necessary to calculate the Eshelby tensor in sach load steff ‘For the case of an elfipsoidy
reinforcement in a generally anisotropic matzix, the Eshelby tensor must be evaluated numerically.
For the case of isotropic matrix materials, closed form solutions for the Eshelby tensor have been
determined for a number of ellipsoidal reinforcement shapes. For the present case of circular

cylindrical fibers aligned in the z3 direction in an isotrapic matrix, the components of the Esheiby
tensor are given by )

1

S 1 1
Sun =8an = m(i =2), Suu=0, Snn=Sm= z-(-l-:-p—)(--i +2v),

v 1 3 1 (42)
S =0, Snus= =)’ Sim = m(‘z‘ -2), Suy=Sms= 7

where » is the matrix Poisson ratio. Note that the Eshelby tensor, and therefore the concentrition
tensors, are not symmetric for the case of cylindrical fibers in an isotropic matrix.

4. RESULTS AND DISCUSSION

" 4.1 The effective trangformation tempneratures

" The composite will start and finish the phase transformation when the fiber starts and finishes
its transiormation. In other words, M® = M*, Mf = M/, A% = A% and A% = AL, where
the superseript “c” denotes “composite” and M*, M7, A* and Af are given by (5). In ordler to
obtain cquations for the effective, or composite, transformation temperatures, it is necessiry to
relate the Rber stress in (§) to the composite stress and the temperature. Unfortunately, the fiber
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stress and the composite stress and temperature are in general related by the rate equation (25),
which includes path dependent concentration tensors. However, under special conditions, such as
non-transformational (thermoelastic) deformation, (25) may be integrated in closed form to yield
a relation between the itber stress and the composite stress and temperature. M and A can
be derived in closed form because they are rcached via a non-transformational (thermociastic)

deformation. Consider the case of initial loading of an austenitic (£ = 0) composite. Prior to the
start of the martensite transformation, (25) may be written as

oy = Bifgoh +b{°AT,  v=m.f (42)
where the superscript “2a”denotes the elastic concentration tensor corresponding to an austenitic

fiber. The effcctive stress-free martensite start temperature, M, can be determined in closed
form by substituting (43) into (§), with of; = 0, to yield

€03 __ 2408 1 I o rf0s B’“ *
M = M 4+ 0! = M + =7 (ATAT)E, (44)

where the superscript “f* denotes “fiber”, mot “finisk”, bfee = (3b/°°b[**)}, and bf*® =

b{;“ ~ }bIe®6;;. By noting that both CM and 8/¢* are positive semi-definite, it is apparent

from (44) that the effective threshold M<®* is never less than the matrix threshold M*®* because

the thermal eigenstresses raise the fiber M* temperature. Thus, although the fiber and compos-
ite transfermation temperatures are equal (M = M?*), it does NOT follow that the fiber and
composite stress-free martensite start temperatures arc equal. i.e. M # M°'. Equation (44)
illustrates the importance of the relative values of M®* and 7'° and &5’ €2 in determining the
temperature increment AT that will initiate the stress-free composite martensite transformation.

~The relationship between M, AT and T is plotted in Figures 1(a) :tnd 1(b). Note from Figurc
1{a) that if M°® > T° and the slope rd/®® > 1, then any AT will résult in a temperature that
is below M. From Figure 1(b), it is apparent that if M®* < T° and the slope 2grd/** > 1,
then there is a region AT* < AT < AT** in which T is above the M<°* threshold. In this
case, the martensitic transformation may be initiated by either cooling or heating the stress-free
composite. The effactive austenite start temperature can also be determined by following the
previous procedure. Consider the case of initial loading of a martensitic (£ = 1) composite. Prior
to the start of the austenitic transformation, (25) may be written as

o = BYRol +H™AT, v=m,f (45)

where the superseript “em™ denotes the elastic concentration tensor corresponding to a martensitic

fiber. The cffcctive stress-free austenite start temperature, A°?, can be determined in closed form
by substituting (45) into (5), with ¢f; = 0, ta yicld

. [fem
A = Ao +E];Ka’ = A"+ LCA (ATAT)* . (46)

The relationship between A%, AT and T is plotted in Figures 1{c)-and 1(d). Note from Figure
1{c) that if A°? > T° and the slope El;-bf em > 1, then no AT will result in a temperature that
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is above A%, From Figure 1(d), it is apparent that if 4% < T° and the siope VLN
then there is a region AT < AT < AT in which the temperature is above the 4% threshold.

In this case, the austenitic transformation may be suppressed by either cooling or heating the
stress-free composite.

This procedure for determining AM<°* and A®** is not suitable for determining the effective stress-

frce finish temperatures M and A beeause {25) cannot be integrated in ciosed forar during
the transformation leading to M<®/ and A%/,

T° will probably depend on the composite manﬁfa.cturing method. The dependence of Afees

and A% on T° indicates the importance of modelling the thermomechanics of the composite
fabrication.

The stress dependence of M and A% can be determined by substituting (43) into (3) with
AT =0 to yieid

. 1 1 (3 _rtea pse ;

M = M* =M + z57 = M + aﬁ(gBIfE?BE{;?nozzo;n) . (47)
where B:ff‘,’ = Bé‘:, - iBI 6. In a similar manner, the stress dependence of A% can be
obtained as

b
A% =0 m A% 4 gl = gy ) (gyf*ma'f""az..a:m) - (48)

T CA E{ ijkl Fijmn'
Both M°* and A* increase linearly with of;, but the effect is now anisotropic: different compo-
neats of of; have differcnt influcnces on M* and A**. The effective transformation is anisotropic

and pressure dependent even though the SME fiber is isotropic and pressure-independent. Also,
the effective transformation tensor is no longer a scalar.

his procedure for determining the stress dependence of M** and A% is not suitable for deter-
mining the the stress dependence of M¢/ and Af because (25) cannot be integrated in closed
form during the transformation leading to M/ and A°f. In monolithic SME materials, the M/
and A’ lines are parallel to the M* and A° lines in a stress-temperature space. The present
authors are currently studying the history dependent shape of the M¢/ and A%/ tines.

4.2 The SME fibe: respionse

The thermomechanical behavior of a NiTi SME fiber presented in Figures 2 thru 4. The NiTi
material propettic%']:uc given in Table 1. Figure 2 indicates that for temperatures greater than
Al the SME is replaced by pscudoclasticity due to transformation. For Figure 2, it was assumed
that the fiber elastic nodulus was constant and equal to the average of the austenitic {£4) aud
martensitic (EM) clastic moduli. The effects of a variable elastic modulus may be scen in Figure
3. The results of a stress-free thermal loading are shown in Figure 4. Recall that a stress-frec
thermal transformation does not produce a transformation strain. Therclore, the tatal strain in
Figure 4 is equal to the thermoclastic strain. Note that in the case of a variable thermoelastic

expausion coefficient, the finish strain docs not equal the start strain even though the finish
temperature is equal to the start temperature,

@ol19/018
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4.3 The SME composite resnonge

The thermomechanical effects of manufacturing, such as applying a prestress to the SME fiber,
arc not considered herein. The response of a SME composite (¢/ = 0.30) is given in Figures 5 thry
7. In Figures 5 and 7, it vas assumed that the fiber thermoclastic moduli are constant and equal
to the average of E4 and EM. Figure 5 indicates that the isothermal transformation stress, the
isothermial transformation strain, and the isothermal hystcresis are all reduced in the composite
vis-a-vis the monolithic SME material. By comparing the longitudinal and transverse responses,
it may be seen that the transformation stress and the maximum transformation strain are highly
anisotropic, which indicates that the effective stress influence coefficient and transformation tcn—
sors are anisotropic. The effects of variable fiber elastic moduli may be scen in Figure 6. The
longitudinal composite response is more sensitive than the monolithic SME material response
{Figure 3) to the cffects of variable elastic moduli. However, the transverse composite response
‘s less sensitive than the monolithic fiber response {Figure 3) to the effects of variable clastic
moduli because the compliant matrix dominates the transverse response. Figure 7 indicates that,
in contrast to the monolithic SME material (Figure 4), thermal loading of a composite that is
free of net stress (of; = 0) results in a transformation strain. During the transformation, which
begins at approximately 23° C, the composite thermal expansion cocfficient varies because the
fiber mechanical tangent stiffness and the mechanieal stress concentration tensor vary. The vari.
able composite thermal expansion coefficient is not a resuit of variable fiber thermoelastic moduli,
which were assumed to be constant in Figure 7. After the transformation is complete, the com-

posite thermal expansion coefficient is equal to its value prior to the start of the tr-\nsfornn’xon
this would not be true in the case of variable fiber thermoelastic moduli.

5. SUMMARY

The Mori-Tanaka micromechanics methed was used to predict the cffective properties of SME
composite materials consisting of a polymer matrix reinforced by a transformation SME fiber. For
the case of an isothermal stress input, the composite transformation stress, the maximum trans-
formation strain, and the hysteresis were all reduced vis.a.vis the monolithic SME material. In
contrast to a monolithic SME material, stress-free thermal loading of a SME compesite can pro-
duce a transforination strain. It was shown that closed form solutions for the effective martensite
and austenite start temperatures can be derived, that they ave sensitive to the stress-free vefer-

ence temperature (T°) of the fiber, and that the stress frec transformation start tamperatures are
higher than those of the monolithic SME material.

In future rescarch. the present authors will consider: (1) the effects of matrix viscoelasticity, (2)
the infiuence of manufacturing effects such as residual stresses and alteration of T°, and (3) the

shape and path dependence of the transformation finish tempcracurcs in a stress-temperature
hyperspace.
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Table 1. Fiber and matrix propertics
NiTi material properties

EA =30.0x 10’ MPa
EM =13.0 x 10* MPa
v =0.33
ot =12.5 x 10—6/°C
oM =18.5 x 10~¢/°C
M* =23°C
M! =5°C
A® =29°C
A! =51°C
CM113 MPaf°C
CA4.5 MPe/°C
=091 x 10* MPo_

Polymer material properties

E =20x 10 MPo
v =0.33

a =75 x 10~%/°C
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